Précipitation d'hydroxydes et d'oxydes métalliques en solution aqueuse contrôle de la taille et de la forme des particules

MINES -ParisTech

Jean-François Hochepied – séminaire LRS 16/01/17

contenu de l'exposé

- 1) Présentation générale
- 2) Principales approches de la précipitation
- précipitation homogène
- double jet à pH contrôlé
- cristallisation d'amorphe
- 3) Perspectives/conclusion

Groupe Systèmes Colloïdaux dans les Procédés **Industriels**

MINES ParisTech

Procédés

Thématique principale: Synthèse de particules submicroniques, nanoparticules et matériaux nanostructurés par **précipitation** en solution aqueuse.

Objectifs: contrôle taille, morphologie, composition, structure pour modifier/optimiser propriétés d'usage.

Équipements pour la synthèse

réacteurs pour la précipitation

réacteurs pour la précipitation

synthèses hydrothermales

autoclaves

enceinte micro-ondes

Réacteur tubulaire

cristallisation d'amorphe, précipitation homogène

précipitation d'(hydr)oxydes: introduction

concept-clé: la sursaturation

équilibre thermodynamique solide-solution $[A(solution)] = [A_{équilibre}]$

 $[A(solution)] < [A_{\acute{e}quilibre}]$

dissolution du solide

[A(solution)]>[A_{équilibre}] sursaturation

précipitation (nucléation, croissance)

cinétiques

lois cinétiques pour la nucléation et la croissance fonctions de la sursaturation et de la tension de surface, par exemple:

taux de nucléation
$$J = J_0 \, \exp\!\left(-\frac{\Delta G_{i^*}}{R\,T}\right)$$
 avec
$$\frac{\Delta G_{i^*}}{R\,T} = \frac{4\Theta^3}{27(\ln S)^2} \quad \Theta \text{ prop. tension de surface}$$

vitesse de croissance par nucléation 2D:

$$V_F^{\perp} = C_1 S \exp\left(-\frac{C_2 \gamma^2}{k^2 T^2 \ln S}\right)$$

cas idéal: pas de recouvrement nucléation-croissance

mélange(s)

Trois niveaux de mélange chacun avec sa propre dynamique⁽²⁾:

 Macromélange : homogénéisation des concentrations à l'échelle du réacteur

 Mésomélange : ségrégation du fluide entrant en petits volumes interagissant les uns avec les autres

 Micromélange : homogénéisation des concentrations du niveau micrométrique \ jusqu'à l'échelle moléculaire

 Un paramètre clé : la puissance spécifique dissipée ε (W/kg) dans le réacteur

2. Jerzy Baldyga JRB. Turbulent Mixing and Chemical Reactions. Wiley, editor. Chichester: John Wiley; 1999. 890 p.

comparaison des temps caractéristiques de MINES Mélange et nucléation/croissance

Précipitation d'hydroxydes en solution aqueuse: Des phénomènes complexes...

la pratique...

Efforts de recherches importants pour le contrôle de cristallinité, de taille et de morphologie de particules ou structures poreuses

Précipitation d'hydroxydes

Mélange de 2 solutions...

- -Réaction dans la zone de mélange: hydrodynamiques, micro and macromélange..effets locaux
- -**Jets séparés**: nucléation et croissance dans le « bulk »: contrôle des conditions physico-chimiques
- -Règle des états successifs: les **phases métastables** précipitent d'abord, leur **transformation** en produit final dépend des conditions physico-chimiques du « bulk »

Précipitation homogène

- -**Thermohydrolyse** (acide Fe³⁺ or Ti⁴⁺)
- -décomplexation de complexes amminés (éléments de transition divalents)
- -Base retard (générée insitu): décomposition de l'urée (hydroxycarbonates amorphes)

précipitation homogène

Procédés par voie homogène pour le contrôle de MINES * taille, morphologie, composition de particules

Précipitation homogène:

- -particules souvent monodisperses
- -nanostructures (mécanismes nucléation-croissance-agglomération)
- -Modélisation (cinétique), perturbations (agents tensioactifs)

Précipitation homogène: déstabilisation de complexes à l'ammoniac

Oxyde de zinc: formes de type pompons, contrôle de la ramification par pH *J.-F. Hochepied, A.P. Almeida de Oliveira, V. Guyot-Ferréol and J.-F. Tranchant, J. Crystal Growth* 283 (2005) 156-162

Hydroxyde de nickel et hydroxyde de cobalt: étude paramétrique et effet de tensioactif anionique (thèses Lim, Carlach, Coudun)

C. Coudun and J.-F. Hochepied, J. Phys. Chem. B 109 (2005) 6069-6074

C. Coudun, E. Amblard, J. Guihaumé and J.-F. Hochepied, Catalysis Today, 124 (2007) 49-54

Système Ni(II)-H₂0-Ni(OH)₂↓ NH₃

(calculs: Thèse Ph. Carlach)

NH₃:forte solubilisation via complexes

grande sensibilité à la température

Synthèse par déstabilisation des complexes à l'ammoniac (thèses Carlach et Coudun)

- 1) ajout progressif de la base NH_3 au sel de nickel à 25°C $Ni^{2+} + n NH_3 \longrightarrow Ni(NH_3)_n^{2+}$
- 2) puis augmentation de la température (60°C), pH libre

Couplage précipitation homogène/ dodécylsulfate thèse C. Coudun

Comparaison sels de nickel "classiques" : nitrate $Ni(NO_3)_2$, sulfate $NiSO_4$ et tensioactif (dodécylsulfate) fonctionnalisé nickel : $Ni(DS)_2$ (DS= $C_{12}H_{25}SO_4$)

c > c.m.c. micelle directe ~ 10 nm concentre localement le réactif

pas de petit anion (nitrate, sulfate) en solution susceptible de s'insérer dans la structure de l'hydroxyde

Morphologies

cylindres obtenus à partir de Ni(DS)₂

cylindre

régularité des lamelles en surface empilement régulier de lamelles de Ni(OH)₂ ??

Interfaced anatase-rutile nanocomposites by thermohydrolysis and their photocatalytic properties

Alexandre Pichavant^{1,2}, Elise Provost², Marie-Hélène Berger¹, Walter Fürst², Jean-François Hochepie d^{1,2}

I: MINES Paris Tech, Centre des Matériaux, Evry

2: ENSTA ParisTech, Unité Chimie et Procédés, Palaiseau

Introduction

Motivation:

Creating anatase-rutile interfaces enhancing photocatalysis.

• Strategy:

Anatase-rutile co-crystallisation assisted by Sn⁴⁺ insertion: rutile phase promoter.

• Syntheses:

Thermohydrolysis in acidic conditions.

• Results:

- Nanocomposites
- Photocatalytic tests.

Introduction: Photocatalysis

- Photon hv absorption induces electron-hole pair

MINES *Introduction: anatase-rutile nanocomposites

Etacheri et al. Inor. Chem. (2012) 51, 7164-7173.

- Anatase: good photocatalytic activity.
- Anatase-Rutile interfaces enhance photocatalytic efficiency owing to electron-transfer from anatase to rutile phase.

MINES ParisTech

*Strategy: Sn-doped TiO₂ nanoparticles

As cassiterite is similar to rutile, Sn incorporation in TiO_2 lattice induces rutile crystallization.

*Strategy: Sn-doped TiO₂ nanoparticles

- Synthesis carried out in previous works:
- Amorphous precipitation followed by:
 - Calcination 1,2
 - Autoclave treatment²
- Sol-gel route³
- our work : one-pot strategy

MINES Solution preparation: chemical system

Starting materials	TiOSO ₄ .xH ₂ O and SnCl ₄ .5H ₂ O
Concentrations	[Ti+Sn] = 1.5 mol/l $[H_2SO_4] = 2 \text{ mol/l}$
Synthesis method	Thermohydrolysis (120°C), I hour Microwave heating source
Interest	Well-known system for Ti ⁴⁺ precipitation Easy way to study precipitation

MINES * Solid phase characterization

Technique	Characteristic observed
UV-Vis spectroscopy Reaction with H_2O_2 to form yellow TiO_2^{2+} and 400 nm peak height measurement.	Ti ⁴⁺ titration in particles
Atomic absorption spectroscopy Overall particles titration, EDX being unsuitable for low concentrations	Sn ⁴⁺ titration in particles
Transmission Electron Microscopy (TEM)	Particles size and morphology, Lattice planes observation
X-ray Diffraction (XRD)	Anatase/Rutile phases ratio
N ₂ gas adsorption (BET theory)	Specific surface area/pore size

4 questions

- QI: Is Sn content in the solid controlled by Sn content in the solution?
- Q2:Does Sn content in the solid control rutile/anatase ratio?
- Q3:Are rutile and anatase particles interfaced or separated?
- Q4: Are the photocatalytic properties correlated to anatase/rutile ratio?

Q1: %Sn in the solid vs %Sn in solution

%Sn<10%: y=x law approximately followed.

Not obvious a priori since Sn⁴⁺ alone does not precipitate in these conditions.

Discrepancy: yield?

Sn content in the solid is controlled by Sn content in solution

Q2: X-ray Diffraction

Q2: %rutile vs %Sn

Rutile ratio is determined by XRD peak integration¹.

Small amount of Sn⁴⁺ induces significant Rutile crystallisation, Anatase crystallization when 1%<%Sn<10% may be explained by inhomogenous Sn repartition

MINES * Q3:Transmission Electron Microscopy

Specific surface area: 150 and 200 m²/g for all samples, consistent with small particle size (10 nm).

Q3: Electron Diffraction

Hologram obtained after electron diffraction : $(001)_{Rutile}$ and $(011)_{Anatase}$ are parallel planes.

MINES ★ Q3:Transmission Electron Microscopy

Porous nanocomposites with oriented $(001)_{Rutile}$ and $(011)_{Anatase}$ interfaces

Q4: Photocatalysis

- Experimental conditions :
 - About 20 mg nanoparticles in 50 ml phenol solution (7,5 mg/l).
 - pH adjusted to 7,0-7,5.
 - Beaker placed under a UV lamp.

Q4: Photocatalysis

P25 (Degussa®) as reference (Rutile ratio about 17%). Phenol degradation monitored by UV-Vis spectroscopy.

Conclusion

- Thermohydrolysis allows rutile-anatase ratio control by Sn⁴⁺ using microwave heating with well-defined temperature ramp.
- Easy "one-pot" synthesis
- Obtained nanocomposites: improved photocatalytic activity /pure anatase.

double jet

Réacteurs

Simple jet:

- -Nucléation dans la zone d'injection
- -pH local?
- -variations spatiales et temporelles du pH

simple jet ou double jet?

Double jet:

- -stationnaire
- -pH « bulk » contrôlé

Méthode du double jet à pH fixé

Exemple d'effet du mélange sur la nature et la morphologie du précipité

base dans acide: bayerite (hydroxyde), particules non poreuses

acide dans base: boehmite mésoporeuse

Importance du mélange: Amorphe acide -> boehmite mésoporeuse Amorphe basique -> bayerite

Méthode du double jet à pH fixé

Boehmite: impact du mélange sur la morphologie J.-F. Hochepied, O. Ilioukhina and M.-H. Berger, Mater. Letters (2003), Vol. 57, pp 2817-2822

Hydroxyde de nickel: effet de pH sur la taille, cristallinité et forme. C. Coudun, F. Grillon and J.-F. Hochepied, Colloids and Surfaces A, 280 (2006) 23-31

Oxyde de zinc: effet de pH sur la morphologie A. P. Almeida de Oliveira, J.-F. Hochepied, F. Grillon and M.-H. Berger, Chem. Mater. (2003), Vol 15(16); pp 3202-3207

Oxyde de zinc

hexagonal, a=3.25 Å, c=5.21 Å

forme de croissance [LI et al., 1999]

spéciation et solubilité

double jet: pH fixé au long de la précipitation spéciation en solution et sursaturation fixées.

choix du pH dans le plateau de minimum de solubilité plateau sur plus de 3 unités de pH

- -sursaturation
- -spéciation en solution
- -charge de surface des particules

ZnO: Particules obtenues à 25°C, pH=10,5

eau distillée morphologie étoilée sous-unités visibles solution de sulfate de sodium:

menhirs de 100nmx200nm à 200nmx450nm

solution de SDS: collage par la base de 50nmx100nm à 100nmx350nm

ZnO: Effet de pH en double jet

Avec les mêmes conditions de précipitation (25°C), mais avec un léger changement de pH vers une zone d'un peu plus faible solubilité: **pH= 9.5** nous obtenons des ellipsoides/bicônes

la fissure centrale confirme le mécanisme par collage des bases. Les nanocristaux sont orientés dans les branches (selon la diffraction électronique), probablement par interaction dipolaire.

cristallisation d'amorphe

Précipitation d'un amorphe isolable suivie de cristallisation

Boehmite:

précipitation d'amorphe: continuité amorphe-boehmite selon T, pH cristallisation saut pH, T.

J.-F. Hochepied and P. Nortier, Powder Technology (2002) Vol.128, pp 268-275

Dioxyde de titane précipitation d'amorphe suivie de cristallisation hydrothermale

Malinger, K. A.; Maguer, A.; Thorel, A.; Gaunand, A.; Hochepied, J.-F., Chemical Engineering Journal 174 (2011), 445-451.

Germanate d'hafnium thèse 1. Balencie

- J. Balencie, L. Levy and J.-F. Hochepied, Thin Solid Films 515 (2007) 6298-6301
- J. Balencie, L. Levy, J.-F. Hochepied; Mat. Chem. Phys. 112 (2008) 546-550

Solution solide KNbO₃-BaTiO₃

Caractérisation KNBT

Nanoparticules KNBT phase perovskite et composition contrôlée

coprécipitation Ti_xSn_{1-x}O₂

collaboration MH Berger, Mines ParisTech Centre des Matériaux

Calciné 500°C

précurseurs coprécipités pour post-traitements

Ti_{0.5}Sn_{0.5}O₂ rutile

céramique dense

Calcination 500°C grains 8 nm

décomposition spinodale

 $a \& b_{Sn rich} = a \& b$ Ti rich

conclusion sur les travaux présentés

contrôle de la réactivité (sursaturation,...) par le contrôle des conditions de

-précipitation (double jet)
-cristallisation d'amorphe (ou transformation polymorphique)
-précipitation homogène

contrôle morphologique de particules et objets multi-échelles

Contrôle morphologique par le choix du procédé

Exemple: ZnO

Transitions
morphologiques
induites par des
variations de pH ou
concentration

Propriétés optiques différentes (absorption UV et fluorescence) Dispersabilité différente

Perspectives scientifiques

Procédés

cristallisation d'amorphe, précipitation homogène

- réacteurs instrumentés et automatisés
- -comparaison méthodes de chauffage (voie hydrothermale): chauffage par paroi vs micro-ondes.
- -exploration de « templates »

Matériaux

- -composition complexe (dopages (TiO₂...), mixtes (KN-PT, Sn_xTi_(1-x)O₂...)
- -objets multi-échelles

Applications

- -photocatalyse, batteries, thermoélectriques, piles à combustibles...
- -plus généralement: intérêt d'architectures multi-échelles pour ab- ou ad-sorber rayonnement ou molécules et transférer (charges...) dans le matériau ou la porosité