Références | [1] Theska, F., Stanojevic, A., Oberwinkler, B., & Primig, S., “Microstructure-property relationships in directly aged Alloy 718 turbine disks”, Materials Science and Engineering: A, 776 (2020), 138967.
[2] Rielli, V. V., Godor, F., Gruber, C., Stanojevic, A., Oberwinkler, B., & Primig, S., “Effects of processing heterogeneities on the micro-to nanostructure strengthening mechanisms of an alloy 718 turbine disk”, Materials & Design, 212 (2021), 110295.
[3] Texier, D., Gómez, A. C., Pierret, S., Franchet, J. M., Pollock, T. M., Villechaise, P., & Cormier, J., “Microstructural features controlling the variability in low-cycle fatigue properties of alloy Inconel 718DA at intermediate temperature”, Metallurgical and Materials Transactions A, 47 (2016), 1096-1109.
[4] R. I. Stephens and H. O. Fuchs, Metal Fatigue in Engineering (2nd ed.), John Wiley & Sons., 2001, 69.
[5] J. E. Shigley, C. R. Mischke and R. G. Budynas, Mechanical Engineering Design (7th ed.), McGraw Hill Higher Education, 2003.
[6] J. C. Stinville, M. A. Charpagne, A. Cervellon, S. Hemery, F. Wang, P. G. Callahan, V. Valle and T. M. Pollock, 'On the origins of fatigue strength in crystalline metallic materials', Science, 377 (2022), 1065-1071.
[7] D. Texier, A. C. Gómez, S. Pierret, J.-M. Franchet, T. M. Pollock, P. Villechaise and J. Cormier, 'Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DAat Intermediate Temperature', Metallurgical and Materials Transactions A, 47 (2016), 1096–1109.
[8] D. Texier, J.-C. Stinville, M. P. Echlin, S. Pierret, P. Villechaise, T. M. Pollock and J. Cormier, 'Short crack propagation from cracked non-metallic inclusions in a Ni-based polycrystalline superalloy,' Acta Materialia, 165 (2019), 241-258.
[9] D. Texier, J. Cormier, P. Villechaise, J.-C. Stinville, C. J. Torbet, S. Pierret and T. M. Pollock, 'Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime: the role of non-metallic inclusions,' Materials Science and Engineering: A, vol. 678 (2016), 122-136.
[10] Damien Texier, Jean-Charles Stinville, Marie-Agathe Charpagne, Zhe Chen, Valery Valle, Patrick Villechaise, Tresa M. Pollock, Jonathan Cormier, 'Role of Non-metallic Inclusions and Twins on the Variability in Fatigue Life in Alloy 718 Nickel Base Superalloy', In: Tin, S., et al. Superalloys 2020. The Minerals, Metals & Materials Series. Springer, Cham.
[11] Harris Farooq, Georges Cailletaud, Samuel Forest, David Ryckelynck, 'Crystal plasticity modeling of the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading: Global and local analyses', International Journal of Plasticity 126 (2020), 102619.
[12] R. Quey, P. Dawson, F. Barbe. Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng., 200 (2011), 1729-1745.
[13] Lionel Gélébart, 'Grain size effects and weakest link theory in 3D crystal plasticity simulations of polycrystals', Comptes Rendus. Physique, Volume 22 (2021), 313-330.
[14] S. Haouala, R. Alizadeh, T.R. Bieler, J. Segurado, J. Llorca, “Effect of slip transmission at grain boundaries in Al bicrystals”, International Journal of Plasticity, Volume 126 (2020), 102600.
[15] H. Maderbacher, B. Oberwinkler, H.-P. Gänser, W. Tana, M. Rollett and M. Stoschka, 'The influence of microstructure and operating temperature on the fatigue endurance of hot forged Inconel 718 components,' Materials Science & Engineering A 585 (2013), 123-131.
[16] C. Doudard, S. Calloch, F. Hild, P. Cugy and A. Galtier, 'Identification of the scatter in high cycle fatigue from temperature measurements,' Comptes Rendus Mécanique, 332(2004), 795-801.
[17] M. D. Sangid, H. J. Maier and H. Sehitoglu, 'The role of grain boundaries on fatigue crack initiation – An energy approach', International Journal of Plasticity, vol. 27(2011), 801-821.
[18] A. Cruzado, S. Lucarini, J. Llorca, J. Segurado, “ Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline Inconel 718”, International Journal of Fatigue, Volume 113 (2018), 236-245.
[19] Gustavo M. Castelluccio, David L. McDowell, ' Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals', Materials Science and Engineering: A, Volume 639 (2015), 626-639.
[20] Gustavo M. Castelluccio, David L. McDowell, ' Effect of annealing twins on crack initiation under high cycle fatigue conditions', J Mater Sci 48 (2013), 2376–2387.
[21] Y. Guilhem, S. Basseville, F. Curtit, J.-M. Stéphan, G. Cailletaud, Numerical investigations of the free surface effect in three-dimensional polycrystalline aggregates, Computational Materials Science, vol. 70, pp. 150-162, 2013, doi:10.1016/j.commatsci.2012.11.052
[22] D. Colas, E. Finot, S. Flouriot, S. Forest, M. Mazière and T. Paris, Local Ratcheting Phenomena in the Cyclic Behavior of Polycrystalline Tantalum, JOM Journal of the Minerals, Metals \& Materials Society, vol. 71, pp. 2586-2599, 2019. doi:10.1007/s11837-019-03539-z
[23] D. Colas, E. Finot, S. Flouriot, S. Forest, M. Mazière and T. Paris, Experimental and Computational Approach to Fatigue Behavior of Polycrystalline Tantalum, Metals, vol. 11, article no. 416, 2021. doi:10.3390/met11030416
[24] A. Marano, L. Gélébart and S. Forest, Intragranular localization induced by softening crystal plasticity: Analysis of slip and kink bands localization modes from high resolution FFT-simulations results, Acta Materialia, vol. 15, pp. 262-275, 2019. 10.1016/j.actamat.2019.06.010
[25] A. Marano, L. Gélébart, S. Forest, FFT-based simulations of slip and kink bands formation in 3D polycrystals: influence of strain gradient crystal plasticity , Journal of the Mechanics and Physics of Solids, vol. 149, 104295, 2021. doi.org/10.1016/j.jmps.2021.104295
[26] A. Marano and L. Gélébart, Non-linear composite voxels for FFT-based explicit modeling of slip bands: Application to basal channeling in irradiated Zr alloys, International Journal of Solids and Structures, vol. 198, pp. 110-125, 2020.
[27] J. Wijnen, R.H.J. Peerlings, J.P.M. Hoefnagels, M.G.D. Geers, A discrete slip plane model for simulating heterogeneous plastic deformation in single crystals, International Journal of Solids and Structures, Volume 228, pp. 111094, 2021. doi.org/10.1016/j.ijsolstr.2021.111094.
[28] M. Lamari, P. Kerfriden, O. U. Salman, V. Yastrebov, K. Ammar and S. Forest, A time-discontinuous elasto-plasticity formalism to simulate instantaneous plastic flow bursts, International Journal of Solids and Structures, under revision, 2024.
[29] Manon Lenglet, Modèle d'endommagement de fatigue en lien avec la microstructure dans un alliage d'aluminium, PhD thesis, École des mines, 2024.
[30] Marie Bouyx, Vincent Chiaruttini, Aurélien Vattré, Vincent Bonnand, and Antoine Blanche, Modélisation numérique d'essais en fatigue pour l'étude de la propagation de fissures courtes à partir d'un défaut surfacique, Journées de Printemps, ONERA, 2023. |