Lancement de la Chaire industrielle ANR TOPAZE


Je dcouvre l'vnement "BATMAN" sur Fortnite ! (Pack Batman + Gotham City)


Bio-based aerogels: new eco-friendly porous materials for thermal insulation and controlled release




La chaire industrielle ANR DIGIMU

+ Toutes les vidéos


Prof. Mesarovic et Dipl-Ing Stephan Wulfighoff

Séminaire invités du Centre des Matériaux - 24 octobre 2013

Phase field models in solids and fluids

Sinisa. Dj. Mesarovic, Washington State University, School of Mechanical & Materials Engineering, Pullman, WA

We discuss applications of Cahn-Hilliard diffuse interface models solid and fluid mechanics. Coupling with simple models is considered is some detail: first with elasticity, then with Newtonian fluid. Salient features of such coupled systems are discussed and the emphasis is on mathematical and numerical aspects. Cahn-Hilliard equations for conserved phase fields are 4th order diffusion PDEs. Convergence of the standard Galerkin FEM requires that the interpolation functions belong to a higher continuity class.

For diffusion controlled, solid state phase transformation in binary alloys, coupled with elasticity of the solid phases, a Galerkin finite element formulation is developed, with mixed-order interpolation. We then consider morphological instabilities in binary multilayers and the post-instability evolution of the system. Maps of evolution behavior are developed in the parameter space of relative thicknesses of initial phases. The relative importance of elastic and chemical energy of the system is discussed and maps are developed for different cases. Depending on the initial configuration, the final equilibrium varies, but even greater variety is observed in evolution paths. Post-instability evolution cannot be reduced to the one-dimensional model.

In fluid mechanics (work in progress), we consider the problem of wetting and motion of the triple line for liquid metals on inert metallic substrates with application for brazing/soldering. Standard, sharp interface models produce singular solutions if no-slip boundary conditions are imposed. However, MD simulations indicate diffusive motion of the triple line, and the phase field model is a natural way for representing such phenomena. The nature of interface stresses is discussed. Experimental and preliminary computational results are presented.

Micromechanical Simulation of the Hall-Petch Effect with a Crystal Gradient Theory including a Grain Boundary Yield Criterion

Stephan Wulfinghoff KIT

Grain boundaries act as obstacles for dislocation motion (Hall-Petch effect). They can be modeled phenomenologically by interface models in gradient plasticity. These models are compared to a pile-up model in the spirit of Eshelby et al. (1951). A relation between the relevant grain boundary stresses of both theoriesestablished.

This relation illustrates the incompatibility of the models: usually, gradient models can not be expected to yield the typical Hall-Petch relation (the yield stress increase scales inverse with the square root of the grain diameter). This is verified by three-dimensional FEM-simulations of a distinct plastic strain gradient model including several hundred grains.

Prof. Mesarovic et Dipl-Ing Stephan Wulfighoff - MINES ParisTech


Samuel Forest, élu membre de l’Académie des Sciences

Formation Samuel Forest, élu membre de l’Académie des… Samuel Forest lors de sa réception à…
> En savoir +

Mines Paris plébiscitée par ses étudiantes

Formation Mines Paris plébiscitée par ses étudiantes Mines Paris - PSL, une école qui répond…
> En savoir +

Femmes de science

Formation Femmes de science Chercheuses confirmées, doctorantes, élèves ou alumni,…
> En savoir +

Quelle école d’ingénieurs a le meilleur réseau LinkedIn ?

Formation Quelle école d’ingénieurs a le…  Mines Paris - PSL au Top 5 du classement LinkedIn 2023…
> En savoir +

En l'honneur de Cécile DeWitt-Morette

Formation En l'honneur de Cécile DeWitt-Morette Claude Ribbe (Mairie du 6e arrondissement), Armand Hatchuel…
> En savoir +


Formation Classement "Employabilité" THE 2022 Dans l'édition 2022 du Global Employability…
> En savoir +

+ Toutes les actualités

Plan du site
Mentions légales © 2014 MINES ParisTech