Lancement de la Chaire industrielle ANR TOPAZE


Je dcouvre l'vnement "BATMAN" sur Fortnite ! (Pack Batman + Gotham City)


Bio-based aerogels: new eco-friendly porous materials for thermal insulation and controlled release




La chaire industrielle ANR DIGIMU

+ Toutes les vidéos


(SUBJECT CLOSE) Fatigue crack growth in generalized scale yielding for thermo-mechanical loading

Thesis proposal

Area of expertiseMechanics
Doctoral SchoolISMME - Systems Engineering, Materials, Mechanics, Energy
SupervisorM. Vincent MAUREL
Research unitCentre of materials
Starting dateOctober 1st 2023
KeywordsFatigue crack growth, superalloys, Thermal barrier coatings, full field measurements, thermo-mechanical fatigue, Finite Element Analysis
AbstractThe combustion chambers of aeronautical turbomachines, located between the high-pressure compressor and the high-pressure turbine, are bearing high thermomechanical loading. The high operating temperatures can cause damage and lead to the appearance of cracks. Competitiveness, a major challenge for aeroengine manufacturers, depends in particular on satisfying airlines in terms of reliability and cost of ownership. The service life claimed by engine manufacturers is therefore a crucial factor in customer choice, in addition to performance in terms of specific fuel consumption, efficiency and noise. Increasing the availability of equipment in service and better forecasting of maintenance intervals is a major focus of work. Previous work carried out by the Materials Center and Safran Aircraft Engines has focused on predicting the behavior and service life of combustion chambers. The methodology for this type of mechanical calculation was validated using a highly instrumented technological test and its digital twin by finite element analysis. The continuation of the studies relates to the prediction of the propagation of a possible crack having started in order to assess its evolution in exploitation and thus to be able to rule on the maintenance in navigability of these chambers, in particular in the presence of thick thermal barriers.
The thermomechanical fatigue loads observed on the targeted parts are complex, being, on the one hand, made up of a succession of cycles of variable amplitude and, on the other hand, presenting strong stress gradients. High loading levels can also generate general scale yielding condition on the component. This complexity of the loading and the structure raises the question of the modelling of the propagation mechanisms and their experimental validation, in particular on a technological specimen. The challenge is to develop both experimental and numerical techniques to reproduce the propagation observed on structure. The sensitivity to loading parameters (gradients, temperature) is a key point of the study.
To achieve this, tests of increasing complexity will allow the simulation of spatial gradients and temporal evolutions consistent with those known on the part. The measurement of temperature and displacement fields will allow to refine the knowledge of these loads. A systematic analysis by electron microscopy will allow to specify the mechanisms of evolution of the cracks under these conditions, as well as the role of the thermal barrier coatings in the propagation of these cracks. The modeling of the experimental conditions will allow to establish and validate associated crack propagation models. The different tests will be simulated using the finite element method and the proposed generalized plasticity propagation criteria. In particular, non-local approaches to evaluate crack growth will be evaluated.
ProfileEngineer and / or Master of Science - Good level of general and scientific culture. Good level of knowledge of French (B2 level in french is required) and English. (B2 level in english is required) Good analytical, synthesis, innovation and communication skills. Qualities of adaptability and creativity. Teaching skills. Motivation for research activity. Coherent professional project.

Prerequisite (specific skills for this thesis):

Skills in metallergy and/or finite element analysis are needed for the project. Courses will be mandatory if one of the topic is not adressed by the applicant.

Applicants should supply the following :
• a detailed resume
• a copy of the identity card or passport
• a covering letter explaining the applicant’s motivation for the position
• detailed exam results
• two references : the name and contact details of at least two people who could be contacted
• to provide an appreciation of the candidate
• Your notes of M1, M2
• level of English equivalent TOEIC
to be sent to recrutement_these@mat.mines-paristech.fr
FundingConvention CIFRE

- MINES ParisTech


A new version of the  COLD SPRAY CLUB website is now online!

A new version of the COLD SPRAY CLUB website is now… The COLD SPRAY CLUB concerns laboratories, technology…
> En savoir +

A MINES ParisTech PhD student awarded at the International Symposium on « High-Temperature Corrosion and Protection of Materials »

Formation A MINES ParisTech PhD student awarded at the… Josiane Nguejio, PhD student at Centre des Matériaux…
> En savoir +

The FEMS Lecturers 2014-2015 include Henry PROUDHON

Recherche The FEMS Lecturers 2014-2015 include Henry PROUDHON Lecturer Series This is a scheme which sponsors selected…
> En savoir +

award for a team of Centre des Matériaux

Recherche award for a team of Centre des Matériaux Nicolas Gueninchault who work in teams M2 and COCAS with Henry…
> En savoir +

Recherche The SF2M award three medals to doctors of the centre des… The medal Réaumur is given by  SF2M, each two…
> En savoir +

+ More articles


+ More events

Plan du site
Mentions légales efil.fr © 2014 MINES ParisTech